None of the three possible binaries exhibit azeotropic behavior, and as shown by Figure 1, neither does the ternary system. Table V contains also the group of parameters A_{ij} , B_{ij} , and C_{ii} for the T-x correlation (eq 5) which yield the smaller mean deviation between the calculated and observed values of Τ.

Acknowledgment

Yehudit Reizner and Moshe Golden helped in the experimental work and numerical calculations.

Glossary

$A_{ij}, B_{ij},$	multicomponent adjustable parameters in eq 5
etc. R. R.	virial coefficients eq 2
$B_{\mu}, C_{\mu}, B_{\mu}$	Redlich-Kister constants, eq 4
ື D _# ໍ	
V',	molar volume, component i
n	number of components
Ρ	total pressure, mmHg
P,°	vapor pressure of pure component <i>i</i> , mmHg
T	boiling temperature of a mixture, K
T,°	boiling temperature of pure component i, K
t	temperature, °C

- mole fraction of component i in the liquid and vapor x_i, y_i phases
- coefficient, Antoine equation α_i
- β_{l} coefficient, Antoine equation
- γ_i activity coefficient of component i
- δ_i coefficient, Antoine equation
- δ_{ij} virial coefficient parameter, eq 2

Subscripts

ca	lcd	calcu	lated

DDSQ	observed	

Literature Cited

- Wisniak, J.; Tamir, A. J. Chem. Eng. Data **1987**, *32*, 294. Wisniak, J.; Tamir, A. J. Chem. Eng. Data **1989**, *34*, 16. Boublikova, L.; Lu, B. C.-Y. J. Appl. Chem. **1969**, *19*, 89.
- (3)
- Wisniak, J.; Tamir, A. J. Chem. Eng. Data 1975, 20, 168. Van Ness, H. C.; Abbott, M. M. Classical Thermodynamics of (5) Nonelectrolyte Solutions; McGraw-Hill: New York, 1982. Tsonopoulos, C. AIChE J. 1974, 20, 263.
- (6)
- McDermott, C.; Ellis, S. R. M. Chem. Eng. Sci. **1965**, 20, 293. Wisniak, J.; Tamir, A. J. Chem. Eng. Data **1977**, 22, 253. (7) (8)
- Tamir, A. Chem. Eng. Sci. 1981, 36, 1453.
- TRC Tables. Selected Values of Properties of Chemical Components; (10)Thermodynamics Research Center Data Project: College Station, TX, 1974.

Received for review June 22, 1988. Accepted April 3, 1989.

The Systems Vinyl Acetate–Toluene and Vinyl Acetate–Propyl **Bromide**-Toluene

Jaime Wisniak* and Abraham Tamir

Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105

Vapor-ilquid equilibrium at 760 mmHg has been determined for the title systems. The binary vinyl acetate-toluene deviates positively from ideal behavior and does not have an azeotrope. The binary and ternary data were correlated by various equations, and the appropriate parameters are reported.

The present work was undertaken to measure VLE data for the title systems for which no isobaric data are available. Data for the two other binaries have already been measured (1, 2).

Experimental Section

Purity of Materials. Vinyl acetate analytical grade (99%+) was purchased from Fluka, propyl bromide (99.4%) from Merck, and analytical grade toluene (99.6%+) from Frutarom. The reagents were used without further purification after gas chromatography failed to show any significant impurities. Properties of the pure components appear in Table I.

Apparatus and Procedure. An all-glass modified Dvorak and Boublik recirculation still (3) was used in the equilibrium determination. A vacuum system connected the vapor condenser with a Swietoslawski ebulliometer and allowed total pressure regulation. The total pressure of the system was determined from the boiling temperature of the distilled water in the ebulliometer. The experimental features have been described in a previous publication (4). All analyses were carried out by gas chromatography on a Packard-Becker Model 417 apparatus provided with a thermal conductivity detector and a Spectra

Table I.	Physical	Constants	of Pure	Components
----------	----------	-----------	---------	------------

index	compd	refractive index (25 °C)	bp (760 mmHg), °C	purity, GLC (min)
1	vinyl acetate	1.3932ª 1.3934°	72.56ª 72.49°	99
2	propyl bromide	1.4320° 1.4317°	70.55⁰ 70.80⁰	99.4
3	toluene	1.4926 ^a 1.4940 ^b	110.7ª 110.63 ^b	99.6

^a Measured. ^b Reference 15. ^c Reference 16.

Physics Model SP 4290 electronic integrator. The column was 3 m long and 0.2 cm in diameter. Column packing, operating temperature, and injector and detector temperatures were as follows: 20% O.V. 17, 120 °C, 210 °C, 220 °C for the binary system; GP 20% SP-2100/0.1% Carbowax 1500 on 100/120 Supelcoport, 100 °C, 230 °C, 230 °C, for the ternary system. Very good separation was achieved under these conditions, and calibration analyses were carried out to convert the peak ratio to the weight composition of the sample. Concentration measurements were accurate to better than $\pm 1\%$. The accuracy in determination of pressure and temperature was $\Delta P = \pm 1$ mmHg and $\Delta t = \pm 0.02$ °C.

Results

The temperature-concentration measurements at 760 mmHg for the binary and ternary systems are reported in Figures 1 and

Table II. Experimental Vapor-Liquid Equilibria Data forVinyl Acetate (1)-Toluene (3) at 760 mmHg

.....

<i>t</i> , °C	x ₁	<i>y</i> ₁	γ_1	γ_2
74.20	0.923	0.967	0.991	1.324
74.61	0.854	0.939	1.027	1.272
77.20	0.752	0.894	1.029	1.194
78.72	0.698	0.865	1.023	1.181
79.52	0.667	0.847	1.023	1.182
80.20	0.638	0.835	1.034	1.146
80.34	0.636	0.830	1.026	1.168
81.98	0.574	0.797	1.041	1.129
84.95	0.470	0.730	1.069	1.094
87.55	0.398	0.675	1.085	1.067
90.10	0.325	0.619	1.135	1.029
91.30	0.289	0.583	1.164	1.030
92.11	0.276	0.570	1.165	1.017
95.27	0.212	0.482	1.179	1.022
97.54	0.170	0.417	1.199	1.020
97.62	0.161	0.408	1.234	1.021
99.19	0.140	0.371	1.241	1.011
100.34	0.127	0.337	1.256	1.013
106.04	0.048	0.157	1.291	1.006

Figure 1. Boiling point diagram for the binary vinyl acetate-toluene.

Figure 2. Activity coefficients for the binary vinyl acetate-toluene.

3 and Tables II and III, together with the activity coefficients which were calculated from the following equation (5):

$$\ln \gamma_{i} = \ln \left(Py_{i}/P_{i}^{\circ}x_{i} \right) + \left(B_{ii} - v_{i}^{\circ} \right) \left(P - P_{i}^{\circ} \right) / RT + \left(P/2RT \right) \sum \sum y_{j} y_{k} \left(2\delta_{ji} - \delta_{jk} \right)$$
(1)

where

$$\delta_{jj} = 2B_{jj} - B_{jj} - B_{jj} \qquad (2)$$

Table III.	Experimental	Vapor-Liquid	Equilibria	Data fo	r
Vinyl Ace	tate (1)-Propyl	Bromide (2)-	Toluene (3)	at 760	
mmHg					

t, °C	<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂	γ_1	γ_2	γ_3
70.5	0.381	0.562	0.300	0.593	1.087	1.071	1.048
71.3	0.290	0.631	0.324	0.650	1.007	1.071	1 1 2 3
71.4	0.077	0.871	0.099	0.885	1.325	1.021	1.120
71.5	0.213	0.701	0.000	0.000	1.020	1.000	1 1 4 1
71 7	0 100	0.835	0.122	0.957	1.200	1.012	1.086
71.7	0.100	0.000	0.122	0.001	1.078	1 1 4 1	0.8806
71.9	0.115	0.400	0.407	0.921	1.075	0.0097	1 146
726	0.110	0.670	0.144	0.001	1.270	1 012	1.071
72.0	0.200	0.070	0.240	0.711	1.204	1.013	1.071
72.0	0.420	0.444	0.401	0.430	1.004	1.003	1.000
79.7	0.224	0.044	0.272	0.000	0.0046	1.013	1.000
72.1	0.040	0.090	0.000	0.130	0.9940	1.280	1.121
73.0	0.330	0.000	0.360	0.004	1.127	1.040	1.003
73.0	0.000	0.040	0.060	0.902	1.274	1.004	1.017
70.1	0.0750	0.0150	0.050	0.000	1.004	1.907	1.100
70.1	0.700	0.100	0.110	0.193	1.004	1.207	1.100
70.4	0.030	0.232	0.000	0.201	1.029	1.107	1.110
70.4	0.000	0.214	0.090	0.260	1.024	1.130	1.192
10.1	0.000	0.041	0.910	0.000	1.004	1.202	1.300
13.1	0.089	0.770	0.117	0.030	1.264	1.006	1.001
13.0	0.524	0.308	0.073	0.308	1.048	1.010	1.099
73.0	0.064	0.792	0.000	0.000	1.315	1.004	1.017
73.9	0.510	0.320	0.570	0.370	1.067	1.061	1.100
74.1	0.102	0.736	0.136	0.813	1.267	1.009	0.9743
74.Z	0.503	0.307	0.003	0.367	1.058	1.086	1.130
74.3	0.830	0.057	0.873	0.077	0.9927	1.225	1.363
74.5	0.577	0.227	0.643	0.280	1.043	1.110	1.198
74.9	0.125	0.673	0.172	0.760	1.272	1.005	1.010
75.5	0.411	0.341	0.498	0.410	1.103	1.054	1.094
75.6	0.056	0.730	0.081	0.847	1.311	1.013	0.9865
75.8	0.147	0.614	0.205	0.709	1.256	1.002	1.048
76.0	0.690	0.093	0.790	0.122	1.024	1.130	1.174
76.3	0.289	0.430	0.373	0.522	1.145	1.038	1.070
76.4	0.170	0.559	0.239	0.670	1.243	1.023	0.9581
77.1	0.243	0.452	0.330	0.560	1.176	1.036	1.005
77.1	0.338	0.367	0.438	0.452	1.121	1.029	1.038
77.5	0.510	0.184	0.637	0.240	1.068	1.077	1.105
77.9	0.671	0.046	0.811	0.066	1.0235	1.174	1.183
78.3	0.550	0.131	0.684	0.181	1.038	1.115	1.132
79.4	0.463	0.156	0.614	0.224	1.072	1.124	1.096
79.5	0.191	0.427	0.288	0.568	1.215	1.039	0.9682
79.7	0.369	0.239	0.520	0.320	1.131	1.040	1.043
80.0	0.089	0.562	0.144	0.712	1.285	0.9761	1.042
80.7	0.272	0.312	0.416	0.412	1.190	0.9968	1.020
81.1	0.367	0.289	0.464	0.350	0.9722	0.9042	1.317
81.4	0.530	0.041	0.747	0.059	1.074	1.065	1.091
81.7	0.214	0.333	0.348	0.466	1.230	1.029	0.9814
81.8	0.321	0.233	0.478	0.325	1.122	1.021	1.051
83.3	0.174	0.332	0.298	0.480	1.235	1.016	1.017
83.7	0.228	0.266	0.380	0.394	1.190	1.030	0.9993
84.1	0.418	0.072	0.639	0.110	1.078	1.050	1.087
85.3	0.259	0.190	0.441	0.290	1.159	1.015	1.035
86.5	0.324	0.095	0.544	0.160	1.106	1.085	1.041
87.8	0.221	0.163	0.415	0.268	1.192	1.022	1.007
88.3	0.081	0.315	0.169	0.518	1.307	1.011	0.9988
89.4	0.260	0.078	0.499	0.137	1.100	1.048	1.024
69.9	0.190	0.104	0.387	0.243	1.222	1.377	0.9614
90.2	0.105	0.204	0.225	0.415	1.273	1.189	0.9454
92.4	0.131	0.104	0.296	0.286	1.204	1.024	0.9904
92.1	0.197	0.007	0.420	0.128	1.200	1.048	1.022
93.U 07 F	0.152	0.118	0.338	0.218	1.220	1.004	1.013
91.0	0.073	0.117	0.194	0.243	1.301	1.008	1.010
90.U 09 1	0.033	0.100	0.093	0.337	1.000	0.000=	1.015
90.1 00 7	0.090	0.000	0.240	0.10/	1.240	0.99990	1.010 1.010
39.7 100 0	0.000	0.009	0.100	0.190	1.200	1.001	0.9901
101 /	0.039	0.127	0.109	0.274	1.200	0.9000	0.0000 1 012
102.4	0.000	0.002	0.171	0.114	1 914	0.0929	0.9010
104.1	0.043	0.038	0.131	0.090	1.261	0.9799	1.016

Vapor pressures P_i° were calculated according to Antoine's equation:

$$\log P_i^{\circ} = \alpha_i - \beta_i / (\delta_i + t)$$
(3)

where the constants are reported in Table IV. The molar virial

Table IV. Vapor-Pressure Constants

compound	αί	β_i	δ_i	
vinyl acetate ^a propyl bromide ^b	6.992 27 6.910 65	1191.99 1194.889	217.01 225.51	
toluene ^b	6.954 64	1344.800	219.482	

^aReference 17. ^bReference 15.

coefficients B_a and the molar mixed coefficient B_a were calculated by the method of Tsonopoulos (6) using the molecular parameters suggested by the same author. The last two terms contributed between 2 and 4% to the activity coefficient, and their influence was important only at very dilute concentrations.

The binary data in Figure 2 and Table II are thermodynamically consistent according to both the area and Herington's criteria (7) and show that the system vinyl acetate-toluene exhibits positive deviations from ideal behavior. The ternary data reported in Table III were found to be thermodynamically consistent as tested by the McDermot-Ellis method (8) modified by Wisniak and Tamir (9). According to this method two experimental points a and b are considered thermodynamically consistent if the following condition is fulfilled:

$$D < D_{max}$$
 (4)

The local deviation D is given by

$$D = \sum_{i=1}^{n} (x_{ia} + x_{ib}) (\ln \gamma_{ib} - \ln \gamma_{ia})$$
(5)

where n is the number of components and

$$D_{\max} = \sum_{i=1}^{n} (x_{ia} + x_{ib})(1/x_{ia} + 1/y_{ia} + 1/x_{ib} + 1/y_{ib})\Delta x + 2\sum_{i=1}^{n} |\ln \gamma_{ib} - \ln \gamma_{ia}|\Delta x + \sum_{i=1}^{n} (x_{ia} + x_{ib})\Delta P/P + \sum_{i=1}^{n} (x_{ia} + x_{ib})\beta_i \{(t_a + \delta_i)^{-2} + (t_b + \delta_i)^{-2}\}\Delta t$$
(6)

The errors in the measurements Δx , ΔP , and Δt were as previously indicated. The first term in eq 6 was the dominant one.

The binary data in Table II were also correlated using the Redlich-Kister (10) equation

$$\log (\gamma_1 / \gamma_3) = A (x_3 - x_1)$$
(7)

with A = 0.129 and a coefficient of determination 0.971.

Figure 3. Isothermals for the ternary system (760 mmHg).

Equation 7 indicates that solutions of vinyl acetate and toluene behave like regular solutions so that

$$G^{\rm E}/RT = 0.297 x_1 x_3$$
 (8)

The binary data were also correlated by using the Wilson model (11)

$$\gamma_1 =$$

A/

h

$$-\ln (x_1 + A_{13}x_3) + x_3 \left[\frac{A_{13}}{x_1 + A_{13}x_3} - \frac{A_{31}}{A_{31}x_1 + x_3} \right]$$
(9)

$$\ln \gamma_2 = -\ln (x_3 + A_{31}x_1) - x_1 \left[\frac{A_{13}}{x_1 + A_{13}x_3} - \frac{A_{31}}{A_{31}x_1 + x_3} \right] (10)$$

The constants A 13 and A 31 were determined by using the simplified method proposed by Apelblat and Wisniak (12)

 $A_{13} = 0.90161$ $A_{31} = 0.80005$

With these values of the constants the Wilson model is capable of predicting the vapor composition of the binary with an av-

Table V. Redlich-Kister Correlation of Binary and Ternary Data

			rm	.sd
B_{ij}	C_{ij}	D_{ij}	γ_1	γ_2
0.27051	-0.010 220	0.139 50	0.025	0.39
0.31330	0.27072×10^{-3}	0.24710×10^{-4}	0.026	0.017
-0.018660	0.9687×10^{-4}	$0.82298 imes 10^{-5}$	0.078	0.068
		OV	erall rmsd	
		Υij	У	 'ij
(2)-toluene (3)	$C_1 = 0$	0.056	0.0)15
	$C_{1} = 0.15426$	0.058	0.0)16
	B _{ij} 0.270 51 0.313 30 -0.018 660 (2)-toluene (3)	$\begin{array}{c c} B_{ij} & C_{ij} \\ \hline 0.27051 & -0.010220 \\ 0.31330 & 0.27072 \times 10^{-3} \\ -0.018660 & 0.9687 \times 10^{-4} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table VI. Correlation of Boiling Points, Eq 12 and 13^a

system	Co	<i>C</i> ₁	C_2	mean D%	rmsd	
vinyl acetate (1)-propyl bromide (2)	-9.0730	0.50615	0.22946	0.061	0.066	
vinyl acetate (1)-toluene (3)	-29.941	17.106	-15.781	0.21	0.19	
propyl bromide (2)-toluene (3)	-20.722	3.6560	12.854	0.22	0.26	
system	system			D%	rmsd	
vinyl acetate (1)-propyl bromide (2)-	vinyl acetate (1)-propyl bromide (2)-toluene (3)			0.61	0.43	

 $^{a}D = |(T_{obsd} - T_{calcd})|/T_{obsd}; \text{ mean } D\% = (100/n) \sum D_{i}.$

Table VII. Parameters of T-x Correlation (Eq 14, n = 3) for Vinyl Acetate (1)-Propyl Bromide (2)-Toluene (3) at 760 mmHg^a

 				,,			V	-,		
ij	A_{ij}	B _{ij}	C _{ij}	D_{ij}	E_{ij}	F_{ij}	G _{ij}	mean D%	rmsd	
12	-19.341	5.4133	-1.583					0.148	0.0298	
13	-53.956	3 2.9 75	-32.688	16.095	33.602	25.318	-65.404	1.79	0.196	
23	-20.759	5.5655	12.836	-6.485				0.213	0.0507	
				Ternary	Parameters					
12	-17.833	9.0536	12.453							
13	-59.527	3 4 .028	-6.9215					0.440	0.0694	
23	-21.27 9	3.9775	5.7545							

 $^{a}T_{1}^{\circ} = 72.56 \text{ °C}; T_{2}^{\circ} = 70.55 \text{ °C}; T_{3}^{\circ} = 110.70 \text{ °C}. D = |(T_{obsd} - T_{oslcd})|/T_{obsd}; \text{ mean } D\% = (100/n) \sum D_{i}$

erage error of 2.2% for y_1 and 0.9% for y_2 .

The activity coefficients for the ternary system were correlated by the following Redlich-Kister expansion (10):

 $\ln \gamma_1 = x_2 x_3 [(B_{12} + B_{13} - B_{23}) + C_{12} (2x_1 - x_2) +$ $C_{13}(2x_1 - x_3) + 2C_{23}(x_3 - x_2) + D_{12}(x_1 - x_2) \times$ $(3x_1 - x_2) + D_{13}(x_1 - x_3)(3x_1 - x_2) - 3D_{23}(x_3 - x_2)^2 +$ $C_{1}(1 - 2x_{1})] + x_{2}^{2}[B_{12} + C_{12}(3x_{1} - x_{2}) +$ $D_{12}(x_1 - x_2)(5x_1 - x_2)] + x_3^2 [B_{13} + C_{13}(3x_1 - x_3) +$ $D_{13}(x_1 - x_3)(5x_1 - x_3)$ (11)

where B_{ii} , C_{ii} , and D_{ii} are the binary constants and C_1 is a ternary constant. The equations for two other activity coefficients were obtained by cyclic rotation of the indices. The binary data used for calculating the binary constants have been reported elsewhere (1, 2).

The binary and ternary Redlich-Kister coefficients were obtained by a Simplex optimization technique and are reported in Table V. The relative values of the root mean square deviation and the ternary constant C_1 suggest that ternary data can be predicted directly from the binary systems.

Boiling points of the binary and ternary systems were correlated by the equation suggested by Wisniak and Tamir (13), based solely on the liquid composition:

binary system

$$T = \sum_{i=1}^{2} x_{i} T_{i}^{\circ} + x_{1} x_{2} \sum_{k=0}^{i} C_{k} (x_{1} - x_{2})^{k} + \dots]$$
(12)

ternary system

$$T = \sum_{i=1}^{l} x_i T_i^{\circ} + \sum_{i,j=1}^{l} \{ x_i x_j \sum_{k=0}^{l} C_k (x_i - x_j)^k \} + x_1 x_2 x_3 \{ A + B(x_1 - x_2) + C(x_1 - x_3) + D(x_2 - x_3) + ... \}$$
(13)

In these equations T_i° is the boiling point of the pure component in K and i is the number of terms in the series expansion of $(x_i - x_i)$. C_k are the binary constants where A, B, C, and D are ternary constants. The various constants of eq 13 are reported in Table VI, which also contains information indicating the degree of goodness of the correlation.

Tamir (14) had developed an alternative equation, based on the concept of "excess property" in which the boiling temperature of the mixture is also correlated solely with the liquid composition:

$$T = \sum_{i=1}^{n} x_i T_i^{\circ} + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_i x_j [A_{ij} + B_{ij}(x_i - x_j) + C_{ij}(x_i - x_j)^2 + ...]$$
(14)

This equation is useful for obtaining isothermals and for exploring the azeotropic behavior and distillation paths of ternary mixtures (14). The coefficients A_{ij} , B_{ij} , and C_{ij} are multicomponent parameters that are determined directly from the multicomponent data. Figure 3 reports the isothermals obtained on the basis of the parameters A_i and B_i reported in Table VII by applying eq 14 for n = 3. These isothermals might be used for considering possible distillation paths in ternary systems as well as to conclude whether a ternary system exhibits azeotropic behavior.

As observed from Figure 3, whereas one binary system has an azeotrope the ternary system does not. Table VII contains also the group of parameters A_{ij} , B_{ij} , and C_{ij} for the T-x correlation (eq 14) which yield the smaller mean deviation between the calculated and observed values of T.

Acknowledgment

Yehudit Reizner and Moshe Golden helped in the experimental measurements and calculations.

Glossary

$A_{ij}, B_{ij},$	multicomponent adjustable parameters in eq 14	4
etc		

A 13, A 31 \	Nilson	constants,	θq	9	and	10
--------------	--------	------------	----	---	-----	----

- B_{ij}, C_{ii} virial coefficients, eq 2
- $B'_{ii}, C'_{ij},$ Redlich-Kister constants, eq 7 and 11
- D_{ii}
- GE Gibbs excess function, cal-mol⁻¹ п
- number of components Ρ total pressure, mmHg
- P_i°
- vapor pressure of pure component i, mmHg
- R gas constant, 62 363.3 cm³·mmHg·mol⁻¹·K⁻¹
- Т boiling temperature of a mixture, K
- T,° boiling temperature of pure component i, K temperature, °C t
- v_i^{L} molar volume of liquid component i, mL·mol⁻¹ mole fraction of component i in the liquid and vapor x_i, y_i
- phases, respectively
- coefficient, Antoine equation α_i
- β_i coefficient, Antoine equation
- γ_i activity coefficient of component /
- δ_i coefficient, Antoine equation

Subscripts

 δ_{ij} virial coefficient parameter, eq 2

- calcd calculated
- obsd observed

Registry No. Vinyi acetate, 108-05-4; propyl bromide, 106-94-5; toluene, 108-88-3.

Literature Cited

- (3)
- Wisniak, J.; Tamir, A. J. Chem. Eng. Data **1967**, *32*, 294. Wisniak, J.; Tamir, A. J. Chem. Eng. Data **1989**, *34*, 14. Boublikova, L.; Lu, B. C.-Y. J. Appl. Chem. **1969**, *19*, 89. Wisniak, J.; Tamir, A. J. Chem. Eng. Data **1975**, *20*, 168. Van Ness, H. C.; Abbott, M. M. Classical Thermodynamics of Vanoletic back Content and Apple New York, 1090 (5) Nonelectrolyte Solutions; McGraw-Hill: New York, 1982. Tsonopoulos, C. AIChE J. 1974, 33, 263. Herington, E. F. G. J. Inst. Pet. London 1951, 37, 457.
- (6)
- (7)
- (1) Hernigliuh, E. F. G. J. Jinst. Pet. Edition 1651, 37, 431.
 (8) McDermott, C.; Ellis, S. R. M. Chem. Eng. Sci. 1965, 20, 293.
 (9) Wisniak, J.; Tamir, A. J. Chem. Eng. Data 1977, 22, 253.
 (10) Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345.
 (11) Wilson, G. H. J. Am. Chem. Soc. 1964, 86, 127.

- (12) Apelblat, A.; Wisniak, J. Ind. Eng. Chem. Res., in press.
 (13) Wisniak, J.; Tamir, A. Chem. Eng. Sci. 1975, 30, 335.
 (14) Tamir, A. Chem. Eng. Sci. 1981, 36, 1453.

- TRC Tables; Selected Values of Properties of Chemical Components; (15) Thermodynamics Research Center Data Project: College Station, TX, 1974
- (16) Daubert, T. E.; Danner, R. P. Data Compilation. Tables of Properties

of the Pure Compounds; Design Institute for Physical Properties, AIChE: New York, 1985.

(17) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The Physical Properties of Gases and Liquids; 3rd ed.; McGraw-Hill: New York, 1977.

Received for review July 28, 1988. Accepted April 6, 1989.

Vapor-Liquid Equilibria in the Carbon Dioxide-1-Hexene and Carbon Dioxide-1-Hexyne Systems

David W. Jennings and Amyn S. Teja*

School of Chemical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100

Vapor-liquid equilibrium data for CO2-1-hexene mixtures at 309.3, 324.2, and 332.3 K and for CO₂-1-hexyne mixtures at 308.1, 323.0, and 332.6 K have been measured in a high-pressure recirculation apparatus. The pressure in the experiments ranged from 1.6 to 9.4 MPa. The experimental data were correlated by use of two simple equations of state: one containing three constants and the other containing four constants. The correlative capabilities of the two equations were found to be similar.

1. Introduction

The behavior of carbon dioxide-hydrocarbon mixtures has been of interest for many years because of their importance in natural gas and petroleum processing. More recently, these mixtures have received increased attention as solvent/cosolvent pairs in the supercritical extraction of coal as well as natural products. Phase equilibrium studies of carbon dioxide-alkane mixtures, with the *n*-alkane ranging from methane to decane, have been conducted by a large number of investigators (1-3). However, only a few investigators have studied carbon dioxide-alkene mixtures and there are no reported studies of carbon dioxide-alkyne mixtures. This work presents highpressure vapor-liquid equilibrium data for the carbon dioxide-1-hexene and carbon dioxide-1-hexyne systems. There is some disagreement in the literature data presented by Wagner and Wichterle (4) and Orbey and Vera (5) for the CO2-1-hexene system. The present work was carried out to verify the behavior of this system and to measure new data for the CO_2 -1-hexyne system. Although the primary focus of the study was on experimental measurements, the ability of two simple equations of state to correlate the data was also examined and is discussed below.

2. Experimental Section

2.1. Apparatus. A schematic diagram of the apparatus used in this work is shown in Figure 1. The apparatus consisted of a stainless-steel view cell (similar to a Jerguson liquid level gauge of 40 cm³ capacity) in which both the liquid and vapor phases were countercurrently recirculated in order to provide mixing of the phases and to ensure that equilibrium was established. An Emco magnetic pump (Model 101) was used for the recirculation of the vapor phase, while a Ruska magnetic pump (Model 2330-802) was used for the liquid phase. Each recirculation loop included ultra-low-volume high-pressure sampling valves manufactured by Valco Instruments Inc. The vapor sampling valve had a volume of 1.0 μ L and the liquid valve 0.2 μ L. The sampling valves were connected on-line to a Hewlett-Packard gas chromatograph (Model 5890A) equipped with a thermal conductivity detector. The carrier flow lines leading from the valves to the gas chromatograph were wrapped with heating tape to prevent condensation in the lines.

An additional feature of the apparatus was the use of an HIP pressure generator as a variable volume controller, similar to that used by Radosz (6). The variable volume allows the control and/or regulation of the system pressure and can be invaluable for correction of disturbances caused by sampling. It should be added that these disturbances were minimal in our apparatus because of the ultra-low-volume sampling valves used.

The entire assembly was placed in a constant-temperature air bath in which an Omega temperature controller (Model CN5001T1-A) connected to a heating element was used to control the air-bath temperature.

The pressure was measured by a digital Heise pressure gauge (Model 710A), and the temperature was determined by a thermistor inserted into the side of the view cell. The pressure gauge was calibrated against a Budenberg dead-weight tester and was estimated to be accurate to within ± 0.014 MPa. The thermistor was calibrated by use of a Leeds and Northrup platinum resistance thermometer, and the temperature measurements were estimated to be accurate within ± 0.1 K. The gas chromatograph was calibrated by preparing synthetic mixtures to determine response factors for the CO₂-1-hexene and CO2-1-hexyne systems. The response factors were estimated to be accurate within 3%. The main source of error could be attributed to difficulties in the preparation of mixtures.

2.2. Experimental Procedure. The system was evacuated at the beginning of the experiment, and the liquid component was introduced into the equilibrium cell from the feed reservoir. Carbon dioxide was then charged into the apparatus. If pressures greater than cylinder supply pressure were desired, the carbon dioxide was liquified by passing through an ice bath and pumped into the apparatus by a Milton Roy simplex mini pump (Model 396-89). The recirculation pumps were then turned on and more CO₂ was introduced into the apparatus to achieve the desired pressures. Some trial and error in charging the apparatus to achieve acceptable liquid levels in the view cell was sometimes also necessary.

Recirculation of the phases was continued until equilibrium had been established. Both phases were then sampled, with the liquid phase being sampled first. Multiple samples (typically 4-6) were taken. After sampling the liquid phase, the vapor sample valve was heated by use of heating tape. The valve temperature was maintained slightly above the bath temperature to prevent any condensation of heavier components in the vapor valve sample slot. The heating was kept minimal to prevent disturbance of equilibrium. Several samples of the vapor phase were then taken until vapor-phase analyses became reproducible. The first few were often found to give